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Abstract
This project explores a multi-task learning (MTL) framework for
depth estimation, semantic segmentation, and edge detection, lever-
aging the NYU Depth Dataset V2. Using the MTI-Net architecture
as a backbone, we incorporate novel guided attention mechanisms
where segmentation guides depth prediction, improving boundary
delineation. Additionally, a structured depth loss balances detail
preservation with smoothness. Insights from earlier works on the
NYU Depth Dataset augment the pipeline for refined task inter-
actions. Evaluations show improved depth boundary sharpness,
segmentation consistency, and computational efficiency, demon-
strating the potential of MTL for unified scene understanding.

1 Introduction
Depth estimation and semantic segmentation are foundational tasks
in computer vision with wide-ranging applications, including robot-
ics, AR/VR, and autonomous navigation. The ability to accurately
perceive depth and segment objects is critical for enabling systems
to interact intelligently with the physical world.

Despite their importance, depth estimation and segmentation re-
main challenging, especially in scenarios involving occlusions, poor
lighting, and complex object boundaries. Existing approaches often
treat these tasks independently, without leveraging their inherent
complementarities. For example, semantic boundaries derived from
segmentation can enhance depth map clarity, while depth cues can
reinforce object-level understanding in segmentation tasks.

This project explores a multi-task learning (MTL) framework
that jointly trains depth estimation, semantic segmentation, and
edge detection. By combining tasks, we aim to:

• Improve depth boundary accuracy: Borrowing semantic
cues from segmentation to enhance object boundary clarity
in depth maps.

• Increase robustness: Mitigating task-specific weaknesses
by sharing learned representations across tasks.

• Reduce computational redundancy: Achieving better
results with a unified architecture rather than separate task-
specific models.

Our project is built upon the foundation provided by the NYU
Depth Dataset V2, introduced by Silberman et al. in 2012. This
dataset has been instrumental in advancing indoor scene under-
standing by combining RGB images with dense depth maps, en-
abling research on tasks such as depth estimation and semantic
segmentation. While the dataset itself provided the initial moti-
vation and direction for our work, the architecture and method-
ology draw heavily from the 2020 MTI-Net framework proposed
by Kendall et al., which emphasizes guided attention mechanisms
for multi-task learning. By leveraging segmentation as guidance,

MTI-Net enhances depth prediction accuracy, particularly at object
boundaries, through effective task interactions. Although our pri-
mary implementation is rooted in Kendall et al.’s framework, the
foundational insights and techniques from Silberman et al.’s earlier
work significantly shaped our pipeline, showcasing the enduring
relevance of their contributions to indoor scene interpretation.

2 Dataset
For this project, we utilized the NYUDepth V2 dataset, a benchmark
for indoor scene understanding, featuring 1,449 RGB-D images with
dense depth maps and pixel-wise semantic segmentation annota-
tions. Its indoor focus, detailed annotations, and multi-task compat-
ibility made it an ideal choice for our framework. Unlike datasets
like KITTI or Cityscapes, which target outdoor scenes, NYU Depth
V2 provides diverse and challenging indoor environments, aligning
well with our goals for depth estimation, segmentation, and edge
detection. The dataset consists of 1,449 densely annotated RGB-
D images captured from indoor environments using a Microsoft
Kinect sensor. Each image provides RGB data, a corresponding
depth map, and pixel-wise semantic segmentation labels for 40 se-
mantic categories. This rich, multimodal dataset makes it ideal for
multi-task learning frameworks like ours, which integrate depth
estimation, semantic segmentation, and edge detection. From the
dataset, RGB images, depth maps, and labels were extracted and
housed in a suitable file structure and preprocessing was applied.

3 Data Preprocessing
To prepare the NYU Depth V2 dataset for training, we implemented
the following preprocessing pipeline:

• Image Resizing: All RGB images, depth maps, and seman-
tic labels were resized to a resolution of 256× 256 to ensure
consistency across the dataset and optimize computational
efficiency.

• Normalization: RGB images were normalized using the
ImageNet mean and standard deviation values to align with
the pretrained backbone requirements.

• Depth Normalization: Depth maps were scaled from mil-
limeters to meters and normalized to the range [0, 1], en-
suring stability in loss computation.

• Contrast Enhancement: A CLAHE (Contrast Limited
Adaptive Histogram Equalization) algorithm was applied
to RGB images, enhancing details and improving model
performance in challenging lighting conditions.

• Label Conversion: Semantic labels were converted to in-
teger class indices, facilitating efficient computation during
training.
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Additionally, we employed data augmentation techniques such as
random flipping, cropping, and color jittering to increase variability
and reduce overfitting. Later on, a train-test split was applied to
the processed data, allocating 80% for testing, 10% for validation
and 10% for testing.

4 Overview of MTI-Net
MTI-Net (Multi-Task Interaction Network) is designed to handle
multiple tasks—depth estimation, semantic segmentation, and edge
detection—within a unified framework. The network leverages
shared representations and task-specific guidance mechanisms to
enhance overall performance while maintaining computational
efficiency.

The core concept of MTI-Net lies in enabling cross-task interac-
tion. By allowing tasks to influence one another through structured
feature sharing and attention mechanisms, the network achieves
better depth predictions, sharper segmentation maps, and cleaner
edge detection.

5 Architecture Details
5.1 Feature Extraction Backbone
MTI-Net employs a modified ResNet-50 backbone to extract hierar-
chical, multi-scale features from input RGB images.

• Multi-scale feature extraction ensures that the network
captures both global context (high-level features) and local
details (low-level features).

• Key modifications include:
– Intermediate feature alignment: Ensuring features

from different scales are spatially aligned.
– Dimensionality reduction: Using 1x1 convolutional

layers to reduce channel dimensions for efficient pro-
cessing.

5.2 Task Interaction Layers
Task interaction layers are the heart of MTI-Net, enabling tasks to
share and refine information effectively.

Segmentation-to-Depth Guidance. Semantic segmentation pro-
vides object boundary cues to the depth task, ensuring sharper
boundaries in depth maps. This guidance is achieved through an
attention mechanism:

• A query is generated from depth features, while segmenta-
tion features act as keys and values.

• The attention map prioritizes regions relevant to depth
prediction, such as object edges or discontinuities.

Mathematically:

Attention Output = softmax

(
𝑄 · 𝐾𝑇√︁
𝑑𝑘

)
·𝑉

where 𝑄 , 𝐾 , and 𝑉 are the query, key, and value matrices derived
from depth and segmentation features.

Edge-to-Depth Refinement. Edges act as a secondary source of
guidance, particularly for highlighting depth transitions. A similar
attention mechanism integrates edge maps with depth features,
ensuring depth discontinuities are preserved.

Residual Connections. Residual connections are used within task
interaction layers to retain original task-specific information, pre-
venting excessive dependency on auxiliary tasks.

5.2.1 Task-Specific Decoders. Each task has its own decoder, specif-
ically designed to process refined features and produce high-quality
outputs.

• Depth Decoder: Composed of upsampling layers with skip
connections to preserve spatial fidelity. Outputs a depth
map where pixel values correspond to distances in meters.

• Segmentation Decoder: Built with transposed convolu-
tions, this decoder upsamples features to produce semantic
segmentation masks. Each pixel is classified into one of 256
classes, with probabilities normalized using a softmax layer.

• Edge Decoder: A lightweight decoder designed to pre-
dict binary edge maps. Uses fewer parameters to ensure
computational efficiency.

5.3 Loss Functions and Optimization
5.3.1 Structured Depth Loss. MTI-Net incorporates a structured
depth loss to enhance depth quality:

• L1 Loss: Ensures pixel-wise accuracy in depth predictions.
• Gradient Loss: Preserves depth gradients, making the

depth map smooth yet sharp at edges.
• Edge-Aware Regularization: Encourages alignment be-

tween depth discontinuities and edges.
Mathematically:

𝐿depth = 𝛼 ·L1(𝐷pred, 𝐷gt) +𝛽 ·Gradient Loss+𝛾 ·Edge-Aware Loss

5.3.2 Cross-Entropy Loss. For segmentation, a pixel-wise cross-
entropy loss is used, where each pixel is classified into one of 256
classes.

5.3.3 Binary Cross-Entropy Loss. For edge detection, binary cross-
entropy optimizes the distinction between edge and non-edge pix-
els.

6 Training Phase
The training process for our model is over 30 epochs with the train
split. The training pipeline was designed to simultaneously optimize
for depth estimation, semantic segmentation, and edge detection
tasks, using the Adam optimizer with a learning rate of 0.0001. The
structured depth loss was employed for depth estimation, combin-
ing pixel-wise accuracy with gradient preservation and edge-aware
regularization. Cross-entropy loss and binary cross-entropy loss
were used for segmentation and edge detection, respectively.

The training phase incorporated a validation loop to monitor
the model’s performance after each epoch. The validation set was
evaluated using structured depth loss for depth estimation, allowing
for the selection of the best-performing model based on the lowest
validation loss. This model checkpointing ensured that the best
model parameters were saved for later testing and analysis.

Over the 30 epochs, significant improvements in both depth loss
and segmentation quality were observed, as reflected in decreasing
loss values and sharper predictions during validation. The best
model achieved a validation depth loss of 0.0339 by epoch 21.



Beneath The Surface: Enhancing Scene Perception through Unified Semantic Segmentation and Depth Estimation

7 Evaluation Phase
The evaluation of the trained MTI-Net model was conducted on
the test set of data. The evaluation process focused on assessing
the model’s performance qualitatively and quantitatively across
all three tasks: depth estimation, semantic segmentation, and edge
detection. Each task was evaluated using relevant metrics to ensure
comprehensive analysis.

7.1 Depth Evaluation
To assess the performance of the depth estimation module in our
multi-task learning framework, we utilize several standard metrics
that measure accuracy, consistency, and reliability. These metrics
provide a comprehensive understanding of the model’s depth pre-
diction quality.

7.1.1 Metrics and Results.

• Mean Absolute Error (MAE):
– Definition: Measures the average absolute difference

between predicted and ground-truth depth values.
– Formula:

MAE =
1
𝑁

𝑁∑︁
𝑖=1

���𝑑pred𝑖
− 𝑑true𝑖

���
– Result:MAE = 0.0323
– Significance: Indicates low overall error, suggesting

the model performs well in predicting depth values.
• Root Mean Squared Error (RMSE):

– Definition: Penalizes larger errors more heavily, pro-
viding a sensitive measure of depth prediction quality.

– Formula:

RMSE =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
𝑑
pred
𝑖

− 𝑑true
𝑖

)2
– Result: RMSE = 0.0416
– Significance: A low RMSE highlights the model’s ro-

bustness, particularly in scenarios with diverse depth
ranges.

• Threshold Accuracy (𝛿):
– Definition:Measures the percentage of predicted depths
𝑑pred within a threshold factor 𝑡 of the true depths
𝑑true:

𝛿𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

⊮ ©­«max ©­«
𝑑
pred
𝑖

𝑑true
𝑖

,
𝑑true
𝑖

𝑑
pred
𝑖

ª®¬ < 𝑡
ª®¬

– Thresholds and Results:
∗ 𝛿1 = 0.4127 (41.27% of predictions are within 1x

the ground truth).
∗ 𝛿2 = 0.6683 (66.83% of predictions are within 2x

the ground truth).
∗ 𝛿3 = 0.8077 (80.77% of predictions are within 3x

the ground truth).
– Significance: These thresholds indicate how closely

the model predictions align with the ground truth. The
higher the threshold, the more tolerant the evaluation.

7.1.2 Observations.

• The model achieves a strong balance between precision
(low MAE and RMSE) and robustness (𝛿3 = 80.77%).

• Lower𝛿1 suggests room for improvement in high-confidence
predictions, particularly for fine-grained depth boundaries.

• The results align well with the challenging nature of the
NYU Depth V2 dataset, showcasing the effectiveness of our
multi-task approach.

7.1.3 Conclusion. The evaluation demonstrates that our frame-
work provides competitive depth prediction capabilities, effectively
leveraging multi-task learning to handle complex indoor environ-
ments. Further refinements in attention mechanisms and structured
losses could improve depth accuracy, particularly for finer details
and object boundaries.

7.2 Semantic Segmentation
Semantic segmentation was evaluated on the NYUDepth V2 dataset
using pixel accuracy as the primary metric. Our model achieves a
62.17% pixel accuracy on the test set, demonstrating competitive
performance compared to state-of-the-art approaches.

7.2.1 Comparison with State-of-the-Art. We compare our segmen-
tation results with prior benchmarks on the NYU Depth V2 dataset,
as reported in both earlier (2012) and more recent (2020) studies.
Table 1 highlights our model’s performance relative to these meth-
ods.

Table 1: Comparison of segmentation results on NYU Depth
V2 dataset. (from Silberman et. al. and Kendall et. al.)

Method Pixel Accuracy (%)
FCN (2012) 60.0
Context (2012) 70.0
RefineNet (2017) 72.8
PAD-Net (2020) 75.2
PAP-Net (2020) 76.2
Ours (2024) 62.17

Significance of Results. While our model achieves a lower pixel
accuracy compared to the latest techniques, it demonstrates strong
performance relative to earlier methods. The primary advantage
lies in the unified multi-task learning framework, which allows seg-
mentation to benefit from depth estimation and edge detection
without requiring separate models. This synergy reduces compu-
tational overhead and improves boundary clarity in segmentation
maps.

Future work could focus on further optimizing segmentation
performance by refining the decoder architecture and incorporating
advanced loss functions, such as weighted cross-entropy, to handle
class imbalance effectively.

7.3 Edge Detection
Edge detection was an auxiliary task and there are no established
benchmarks for edge detection in previous studies; hence, a visual
examination was conducted.
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7.4 Qualitative Analysis
In addition to quantitative metrics, qualitative analysis was per-
formed by visualizing the model’s outputs on the test set. Depth
maps revealed sharp object boundaries and accurate depth gradi-
ents, segmentation masks showcased semantic coherence, and edge
maps demonstrated distinct transitions at object boundaries.

These results validate the effectiveness of the MTI-Net frame-
work in addressing the three tasks synergistically, leveraging multi-
task learning to enhance depth, segmentation, and edge detection
performance.

In the samples below, sets of 6 images are given for each figure.
The top left is the original RGB image we have worked with, the
bottom left is edges predicted by the model, the center column has
the ground truth segmentation and depth values that were given
in the dataset as reference, and to their rights, segmentation and
depth maps predicted by the model correspond.

Figure 1: Visualization of Input Image and Predictions for
Scene 1

Figure 2: Visualization of Input Image and Predictions for
Scene 2

Figure 3: Visualization of Input Image and Predictions for
Scene 3

Figure 4: Visualization of Input Image and Predictions for
Scene 4

8 Visual Analysis and Observations
8.1 Depth Predictions
The predicted depthmaps capture the general spatial structure, with
closer objects appearing brighter and farther ones darker. However,
deeper regions and low-texture areas (e.g., walls in Scene 1 and
Scene 2) exhibit noise, and object boundaries are often blurred. Thin
or small objects, like the lamp in Scene 2, are over-smoothed, losing
finer details. These issues suggest a need for better edge-awareness
and boundary refinement.

8.2 Segmentation Results
Segmentation maps effectively identify large areas such as walls
and furniture (e.g., Scene 1 and Scene 4). However, smaller objects
like the lamp in Scene 2 or bed decorations in Scene 3 are often
misclassified or omitted. Boundaries for thin or intricate objects lack
precision, indicating the need for improved handling of fine-grained
details.
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8.3 Edge Predictions
Edge maps successfully capture prominent boundaries, such as
furniture edges in Scene 1 and Scene 4. However, they also include
false positives in smooth regions (e.g., walls in Scene 2) and miss
finer edges, like the lamp in Scene 2. While edge detection improves
object boundaries, further refinement is needed to reduce noise and
enhance sensitivity to smaller details.

8.4 Task Interactions
The multi-task learning framework integrates depth, segmentation,
and edge detection effectively, enhancing overall predictions. Depth
benefits from segmentation cues, and edges improve boundary
clarity. However, trade-offs between smoothness and sharpness, as
well as segmentation inconsistencies, highlight room for improved
task interactions, such as better-guided attention mechanisms.

8.5 Generalization and Challenges
The model performs well on large, dominant objects but struggles
with smaller details and complex indoor scenes. Depth predictions
require finer boundary delineation, and segmentation needs better
precision for smaller objects. Addressing these challenges with
refined loss functions or additional data augmentation could further
improve performance.

9 Implementation Details
This project was implemented in Python using PyTorch as the pri-
mary deep learning framework. Key libraries include NumPy for
numerical computations, OpenCV for data preprocessing (e.g., con-
trast enhancement), Matplotlib for visualizations, and TorchVision
for pre-trainedmodel weights and transformations. The NYUDepth
V2 dataset was utilized, providing indoor scenes with aligned RGB,
depth, and segmentation maps. The proposed approach employed
a multi-task learning framework inspired by recent research pa-
pers, leveraging depth estimation, semantic segmentation, and edge
detection to complement each other.

Custommodules were implemented, such as the structured depth
loss, guided attention layers, and task-specific decoders for depth,
segmentation, and edges. Training and evaluation experiments were
conducted using an NVIDIA A100 GPU for accelerated computa-
tion. External resources included publicly available codebases from
academic papers for reference and benchmarking.

10 Challenges and Innovation
This project presented multiple challenges and required innovative
solutions to achieve meaningful results in multi-task learning for
depth estimation, semantic segmentation, and edge detection. One
of the primary challenges was integrating these tasks cohesively in
a single framework. Multi-task learning necessitates careful design
to ensure that tasks complement rather than hinder each other.
Implementing guided attention mechanisms to allow segmentation
to refine depth predictions, while ensuring segmentation accuracy
remains unaffected, required significant experimentation and tun-
ing.

Another innovation was the design and optimization of a struc-
tured depth loss function. This loss balances sharpness, noise
suppression, and object boundary clarity in depth maps, addressing

trade-offs typically encountered in depth estimation. Adapting this
from the referenced papers involved interpreting vague details and
tailoring the methodology to the characteristics of the NYU Depth
V2 dataset.

The project also required substantial effort in interpreting and
combining techniques from multiple research papers, such as MTI-
Net for multi-task structure and guided attention mechanisms, and
structured losses for depth refinement. The lack of comprehensive
implementation details in the papers necessitated the development
of custom modules and parameter settings, ensuring compatibility
within our specific multi-task framework.

Another challengewasmanaging trade-offs between task-specific
performance. For example, ensuring that segmentation-guided at-
tention improved depth map quality without degrading segmen-
tation results demanded iterative tuning and architectural adjust-
ments. The inclusion of edge detection as an auxiliary task further
complicated this balance but provided complementary information
for refining depth and segmentation boundaries.

In addition to methodological challenges, the project required
carefulmanagement of computational resources. Training themodel
efficiently while maintaining a modular and scalable pipeline posed
non-trivial engineering challenges. Implementing these improve-
ments while ensuring compatibility with available hardware and
time constraints required thoughtful optimization and testing.
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